9 dạng toán ứng dụng 7 hằng đẳng thức đáng nhớ
Trong chương trình Đại số 8 có rất nhiều dạng bài tập ứng dụng 7 hằng đẳng thức đáng nhớ vào để giải như: tính giá trị biểu thức, tìm giá trị nhỏ nhất.
Nhắc lại 7 hằng đẳng thức đáng nhớ:
2) (A – B)2 = A2 – 2AB + B2
3) A2 – B2 = (A – B)(A + B)
4) (A + B)3 = A3 + 3A2B + 3AB2 + B3
5) (A – B)3 = A3 – 3A2B + 3AB2 – B3
6) A3 + B3 = (A + B)(A2 – AB + B2)
7) A3 – B3 = (A – B)(A2 + AB + B2)
Dạng 1 : Tính giá trị của biểu thức
Bài 1 :tính giá trị của biểu thức : A = x2 – 4x + 4 tại x = -1
Giải.
Ta có : A = x2 – 4x + 4 = A = x2 – 2.x.2 + 22 = (x – 2)2
Tại x = -1 : A = ((-1) – 2)2=(-3)2= 9
Vậy : A(-1) = 9
Dạng 2 : Chứng minh biểu thức A không phụ thuộc vào biến
B = (x – 1)2 + (x + 1)(3 – x)
Giải.
B =(x – 1)2 + (x + 1)(3 – x)
= x2 – 2x + 1 – x2 + 3x + 3 – x
= 4 : hằng số không phụ thuộc vào biến x.
Dạng 3 : Tìm giá trị nhỏ nhất của biểu thức
C = x2 – 2x + 5
Giải.
Ta có : C = x2 – 2x + 5 = (x2 – 2x + 1) + 4 = (x – 1)2 + 4
Mà : (x – 1)2 ≥ 0 với mọi x.
Suy ra : (x – 1)2 + 4 ≥ 4 hay C ≥ 4
Dấu “=” xảy ra khi : x – 1 = 0 hay x = 1
Nên : Cmin = 4 khi x = 1
Dạng 4 : Tìm giá trị lớn nhất của biểu thức
D = 4x – x2
Giải.
Ta có : D = 4x – x2 = 4 – 4 + 4x – x2 = 4 – (4 + x2 – 4x) = 4 – (x – 2)2
Mà : -(x – 2)2 ≤ 0 với mọi x.
Suy ra : 4 – (x – 2)2 ≤ 4 hay D ≤ 4
Dấu “=” xảy ra khi : x – 2 = 0 hay x = 2
Nên : Dmax = 4 khi x = 2.
Dạng 5 :Chứng minh đẳng thức
(a + b)3 – (a – b)3 = 2b(3a2 + b2)
Giải.
VT = (a + b)3 – (a – b)3
= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3)
= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b – 3ab2 + b3
= 6a2b + 2b3
= 2b(3a2 + b2) ->đpcm.
Vậy : (a + b)3 – (a – b)3 = 2b(3a2 + b2)
Dạng 6 : Chứng minh bất đẳng thức
Biến đổi bất đẳng thức về dạng biểu thức A ≥ 0 hoặc A ≤ 0. Sau đó dùng các phép biến đổi đưa A về 1 trong 7 hằng đẳng thức.
Dang 7: Phân tích đa thức thành nhân tử
F = x2 – 4x + 4 – y2
Giải.
Ta có : F = x2 – 4x + 4 – y2
= (x2 – 4x + 4) – y2 [nhóm hạng tử]
= (x – 2)2 – y2 [đẳng thức số 2]
= (x – 2 – y )( x – 2 + y) [đẳng thức số 3]
Vậy : F = (x – 2 – y )( x – 2 + y)
Bài 1: A = x3 – 4x2 + 4x
= x(x2 – 4x + 4)
= x(x2 – 2.2x + 22)
= x(x – 2)2
Bài 2: B = x 2 – 2xy – x + 2y
= (x 2– x) + (2y – 2xy)
= x(x – 1) – 2y(x – 1)
= (x – 1)(x – 2y)
Bài 3: C = x2 – 5x + 6
= x2 – 2x – 3x + 6
= x(x – 2) – 3(x – 2)
= (x – 2)(x – 3)
Dạng 8 : Tìm x. biết :
x2 ( x – 3 ) – 4x + 12 = 0
Giải.
x2 ( x – 3 ) – 4x + 12 = 0
x2 ( x – 3 ) – 4(x – 3 ) = 0
( x – 3 ) (x2 – 4) = 0
( x – 3 ) (x – 2)(x + 2) = 0
( x – 3 ) = 0 hay (x – 2) = 0 hay (x + 2) = 0
x = 3 hay x = 2 hay x = –2
vậy : x = 3; x = 2; x = –2
Dạng 9 : Thực hiện phép tính phân thức
Tính giá trị của phân thức M = tại x = –1
Giải.
ta có : M =
=
Khi x = -1 : M =
Vậy : M = tại x = -1 .
Dấu hiệu nhận biết của các tứ giác đặc biệt
Tìm giá trị nhỏ nhất của biểu thức bằng cách sử dụng hằng đẳng thức
Cách so sánh hai số bằng phương pháp hằng đẳng thức
Dạng toán chia đa thức f(x) chia hết cho đa thức g(x)
Dạng toán tìm điều kiện xác định và giá trị nguyên
Dạng toán Định giá trị của phân thức – Đại số 8
20 bài tập Hình học 8 cuối học kì 1