Phương pháp chứng minh tính chẵn, lẻ của hàm số – Đại số 10

Bài viết này Timgiasuhanoi.com đưa ra phương pháp chứng minh tính chẵn, lẻ của hàm số. Giúp các em học sinh khối 10 học tốt môn đại số 10.

Lý thuyết về hàm số chẵn, hàm số lẻ được nêu ra bằng định nghĩa. Sau đó là phương pháp chứng minh tính chẵn, lẻ qua các ví dụ minh họa.
Định nghĩa :
Hàm số y = f(x) với tập xác định D gọi là hàm số chẵn nếu :

x ∈ D thì -x ∈ D và f(-x) = f(x).

* Lưu ý : đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng.
Hàm số y = f(x) với tập xác định D gọi là hàm số lẻ nếu :

x ∈ D thì -x ∈ D và f(-x) = -f(x).

* Lưu ý : đồ thị của hàm số lẻ nhận góc tọa độ làm tâm đối xứng.

+ D là tập đối xứng có dạng : [-a; a] với a ∈ R.

————————–
Phương pháp :
Bước 1 : tìm TXĐ : D chứng minh D là tập đối xứng.
Bước 2 : lấy x ∈ D => – x ∈ D.
Bước 3 : xét : f(-x) :

—————————-
Bài tập 1 : Xét tính chẵn lẻ của hàm số : y = f(x) = x3 + x
TXĐ : D = R

=> D là tập đối xứng.

lấy x ∈ D => – x ∈ D.
Xét  f(-x) = (-x)3 + (-x) = -( x3 + x)= -f(x)

=> f(-x) = – f(x)

vậy :  hàm số y = x3 + x là hàm số lẻ.
Bài tập 2 : Xét tính chẵn lẻ của hàm số : y = f(x) = x4 + x2 – 2
TXĐ : D = R

=> D là tập đối xứng.

lấy x ∈ D => – x ∈ D.
Xét : f(-x) = (-x)4 + (-x)2 – 2 = x4 + x2 – 2 = f(x)

=> f(-x) = f(x)

Vậy :  hàm số y = x4 + x2 – 2 là hàm số chẵn.
Bài tập 3 : Xét tính chẵn lẻ của hàm số : y = f(x) = \sqrt{2x + 8 } – 5
TXĐ : 2x + 8 ≥ 0 <=> x ≥ – 4

D = [-4; + ∞)

ta có : 5 ∈ D mà – 5 ∉ D => D không là tập đối xứng.
vậy : hàm số không chẵn, không lẻ.
Bài tập 4 : Xét tính chẵn lẻ của hàm số : y = f(x) = \sqrt{x + 3 }+\sqrt{3-x}
Đk :\begin{cases} x+3 \geq 0\\ 3-x \geq 0 \end{cases} \Leftrightarrow \begin{cases} x \geq -3\\ x \leq 3 \end{cases} \Leftrightarrow -3 \leq x \leq 3
Vậy : D = [-3; 3] : miền đối xứng.
lấy x ∈ D => – x ∈ D.
Xét : f(-x) = \sqrt{(-x) + 3 }+\sqrt{3-(-x)}=\sqrt{3-x }+\sqrt{3+x} = f(x)
=> f(-x) = f(x)
=> hàm số y = \sqrt{x + 3 }+\sqrt{3-x} là hàm số chẵn.

Toán lớp 10 - Tags: , , ,