Ôn tập: Đường tròn ngoại tiếp – nội tiếp và bàng tiếp tam giác, đa giác
1. Cho tam giác ABC, đường tròn đi qua 3 đỉnh A; B và C của tam giác gọi là đường tròn ngoại tiếp tam giác ABC.
2. Tâm của đường tròn ngoại tiếp là điểm cách đều 3 đỉnh nên là giao điểm của ba đường trung trực của ba cạnh tam giác.
3. Đường tròn tiếp xúc với cả ba cạnh của tam giác ABC gọi là đường tròn nội tiếp tam giác.
4. Tâm của đường tròn nội tiếp là điểm cách đều 3 cạnh nên nó là giao điểm của ba đường phân giác.
5. Đường tròn tiếp xúc với 1 cạnh BC và phần kéo dài của hai cạnh kia (AB và AC) gọi là đường tròn bàng tiếp trong góc A.
6. Vậy đường tròn bàng tiếp góc A có tâm là giao điểm phân giác trong góc A và hai phân giác ngoài tại B và C.
7. Một tam giác có ba đường tròn bàng tiếp.
8. Tam giác nội tiếp đường tròn thì đường tròn này gọi là ngoại tiếp tam giác.
9. Tam giác ngoại tiếp đường tròn thì đường tròn ngoại tiếp tam giác.
Bài tập:
1. Cho tam giác đều ABC nội tiếp (O; R). Tính:
a. Cạnh của tam giác ABC.
b. Chiều cao AH theo R.
2. Cho tam giác ABC. D là điểm trên cạnh BC. Gọi (O) là đường tròn nội tiếp tam giác ABC và H là tâm đường tròn nội tiếp tam giác ABD. C/m B; H và O thẳng hàg.
3. Cho tam giác ABC vuông tại A có AB=c; AC=b. Gọi R là bán kính đường tròn ngoại tiếp và r là bán kính đường tròn nội tiếp. C/m : b+c = 2(R+r).
4. Cho tam giác ABC ngoại tiếp (O; r) có AB=c; AC=b và BC=a. C/m: diện tích tam giác ABC bằng $ \displaystyle \frac{a+b+c}{2}.r$ .
Ôn tập: Vị trí tương đối của hai đường tròn
Ôn tập: Tiếp tuyến của đường tròn
Ôn tập: Vị trí tương đối giữa đường thẳng và đường tròn
Ôn tập: Tính chất đối xứng của đường tròn
Ôn tập: Định nghĩa và sự xác định đường tròn
Ôn tập: Tỉ số lượng giác của góc nhọn
Ôn tập: Hệ thức lượng trong tam giác vuông – Hình học 9