Đề thi vào 10 môn Toán THPT chuyên tỉnh Vĩnh Long 2018
Đề thi tuyển sinh vào lớp 10 môn Toán THPT chuyên, Sở giáo dục và đào tạo tỉnh Vĩnh Long năm học 2018 -2019. Thời gian làm bài 120 phút, không kể thời gian giao đề.
Bài I. (2 điểm)
Cho biểu thức: $ A=\left( \frac{x+3\sqrt{x}+2}{x\sqrt{x}-8}-\frac{1}{\sqrt{x}-2} \right):\frac{1}{\sqrt{x}}$ với $ x>0;x\ne 4.$ Tính giá trị của $ A$ tại $ x=14+6\sqrt{5}.$
Tính giá trị của biểu thức: $ B=\sqrt{12-\sqrt{80-32\sqrt{3}}}-\sqrt{12+\sqrt{80-32\sqrt{3}}}$
Bài II. (1 điểm)
Cho phương trình: $ {{x}^{2}}+(2m-3)x-{{m}^{2}}-1=0$ với $ m$ là tham số, $ x$ là ẩn.
a) Chứng tỏ rằng phương trình có hai nghiệm phân biệt với mọi giá trị của $ m.$
b) Giả sử $ {{x}_{1}};{{x}_{2}}$ là nghiệm của phương trình. Tìm $ m$ để phương trình có hai nghiệm $ {{x}_{1}};{{x}_{2}}$thỏa mãn $ \left| {{x}_{1}} \right|-\left| {{x}_{2}} \right|=3.$
Bài III. (1,5 điểm)
a) Giải phương trình: $ {{({{x}^{2}}-9)}^{2}}=12x+1.$
b) Giải hệ phương trình: $ \left\{ \begin{array}{l}\sqrt{2x-y-9}-36+{{x}^{2}}=0\\{{y}^{2}}-xy+9=0\end{array} \right.$
Bài IV. (1,5 điểm)
a) Tìm các số tự nhiên $ x$ thỏa mãn biểu thức $ P=-{{x}^{4}}+{{x}^{2}}+14x+49$ là số nguyên tố.
b) Tìm nghiệm nguyên của phương trình: $ {{x}^{2}}-xy+{{y}^{2}}=2x-3y-2.$
Bài V. (1,0 điểm)
Cho tam giác $ ABC$ vuông tại $ A$ có $ AB=6\,cm;\,AC=\,8\,cm.$ Các đường phân giác trong và phân giác ngoài của góc $ B$ lần lượt cắt các đường thẳng $ AC$ tại $ M;N.$ Tính diện tích của tam giác $ BMN.$
Bài VI. (1,0 điểm) Cho tam giác $ ABC$ vuông tại $ A$ có $ (AB<AC)$ và đường cao AH. Vẽ đường tròn (O) đường kính BC. Trên cung nhỏ AC lấy điểm E $ (E\ne A;E\ne C)$ sao cho hai tia AE và BC cắt nhau tại I; AC cắt BE tại N. Kéo dài AH cắt đường tròn (O) tại điểm thứ hai là D, DE cắt BC tại M.
a) Chứng minh MN song song với AD.
b) Chứng minh tam giác OME đồng dạng với tam giác OEI.
Bài VII. (1,0 điểm) Cho $ a;b;c$ là các số dương. Chứng minh:
a) $ \frac{{{a}^{3}}}{{{a}^{2}}+{{b}^{2}}}\ge a-\frac{b}{2}.$
b) $ \frac{{{a}^{3}}}{{{a}^{2}}+ab+{{b}^{2}}}+\frac{{{b}^{3}}}{{{b}^{2}}+bc+{{c}^{2}}}+\frac{{{c}^{3}}}{{{a}^{2}}+ac+{{c}^{2}}}\ge \frac{a+b+c}{3}.$
Đề thi Toán vào lớp 10 - Tags: đề thi vào 10, tuyển sinh vào 10, Vĩnh LongĐề thi vào 10 môn Toán THPT Nguyễn Tất Thành – ĐH sư phạm Hà Nội 2018
Đề thi vào 10 môn Toán THPT chuyên Phan Bội Châu – Nghệ An 2018
Đề thi vào 10 môn Toán tỉnh Lâm Đồng 2018
Đề thi vào 10 môn Toán THPT chuyên ĐH Vinh – Nghệ An 2018
Đề thi vào 10 môn Toán tỉnh Nam Định 2018 có đáp án
Đề thi vào 10 môn Toán tỉnh Hà Tĩnh 2018
Đề thi vào 10 môn Toán THPT chuyên Hà Tĩnh 2018