Đề thi thử môn Toán vào 10 trường THCS Trần Phú 2020
Đề thi thử tuyển sinh vào lớp 10 môn Toán của trường THCS Trần Phú, TP Hải Phòng năm học 2020-2021.
Câu 1. (2,0 điểm)
a. Thực hiện phép tính: $\displaystyle (\sqrt{{2020}}-1)(\sqrt{{2020}}+1)$
b. Giải hệ phương trình:
$\displaystyle \left\{ {\begin{array}{*{20}{l}} {x-y=1} \\ {2x+3y=7} \end{array}} \right.$
c. Giải phương trình: $\displaystyle 9{{x}^{2}}+8x+1=0$
d. Giải phương trình: $\displaystyle {{x}^{4}}+2017{{x}^{2}}-2018=0$
Câu 2. (2,0 điểm)
Cho parapol (P): $\displaystyle y={{x}^{2}}$ và đường thẳng (d): $\displaystyle y=2x+{{m}^{2}}+1\text{ }\!\!~\!\!\text{ }$ (m là tham số).
a. Tìm các giá trị của m để đường thẳng d song song với đường thẳng (d’): $\displaystyle y=2{{m}^{2}}x+{{m}^{2}}+m$
b. Chứng minh rằng với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B.
c. Kí hiệu $\displaystyle {{x}_{a}};\text{ }{{x}_{b}}$ là hoành độ của điểm A và điểm B. Tìm m sao cho $\displaystyle x{{{}^\text{2}}_{{a\text{ }+}}}~x{{{}^\text{2}}_{b}}~=\text{ }14$
Câu 3. (1,5 điểm)
Hai xe ô tô cùng đi từ cảng Dung Quất đến khu du lịch Sa Huỳnh, xe thứ hai đến sớm hơn xe thứ nhất là 1 giờ. Lúc trở về xe thứ nhất tăng vận tốc thêm 5 km mỗi giờ, xe thứ hai vẫn giữ nguyên vận tốc nhưng dừng lại nghỉ ở một điểm trên đường hết 40 phút, sau đó về đến cảng Dung Quất cùng lúc với xe thứ nhất. Tìm vận tốc ban đầu của mỗi xe, biết chiều dài quãng đường từ cảng Dung Quất đến khu du lịch Sa Huỳnh là 120 km và khi đi hay về hai xe đều xuất phát cùng một lúc.
Câu 4. (3,5 điểm)
Cho đường tròn tâm O đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA. Vẽ đường thẳng d vuông góc với AB tại I, cắt tia BC tại M và cắt đoạn AC tại P; AM cắt đường tròn (O) tại điểm thứ hai K.
a. Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn.
b. Chứng minh ba điểm B, P, K thẳng hàng.
c. Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại Q. Tính diện tích của tứ giác QAIM theo R khi BC = R.
Câu 5. (1,0 điểm)
a. Cho $\displaystyle x,\text{ }y\text{ }>\text{ }0$, thỏa mãn $\displaystyle {{x}^{2}}+{{y}^{2}}=1$. Tìm giá trị nhỏ nhất của biểu thức $\displaystyle A=\frac{{-2xy}}{{1+xy}}$
b. Cho $\displaystyle a,b,c$ là độ dài ba cạnh của một tam giác.
Chứng minh phương trình $\displaystyle {{x}^{2}}+(a+b+c)x+ab+bc+ca=0$ vô nghiệm.
Đề thi Toán vào lớp 10 - Tags: đề thi thử, đề thi thử vào 10, THCS Trần PhúĐề thi thử vào 10 môn Toán THPT chuyên Bắc Ninh 2020 có đáp án
43 Đề thi thử vào 10 môn Toán năm học 2020 – 2021
Đề thi môn Toán vào lớp 10 THPT chuyên Thái Bình năm 2019-2020
Đề thi thử vào 10 môn Toán THCS Cao Bá Quát lần 2 năm học 2018-2019
Đề thi thử vào 10 môn Toán Hà Nội Amsterdam đợt 1 ngày 24/3/2019
Tuyển tập các bài Hình học trong đề thi vào lớp 10 Hà Nội từ 2006 tới nay
Đề thi thử vào lớp 10 môn Toán THCS Ngôi Sao Hà Nội 2018 có đáp án