Đề thi chọn đội tuyển HSG môn Toán tỉnh Thanh Hóa 2017-2018
Đề thi chọn đội tuyển học sinh giỏi môn Toán tỉnh Thanh Hóa năm học 2017-2018.
Bài 1. Cho dãy số: $ \displaystyle {{a}_{0}},{{a}_{1}},{{a}_{2}},…$ thỏa mãn: $ \displaystyle {{a}_{{m+n}}}+{{a}_{{m-n}}}=\frac{1}{2}\left( {{{a}_{{2m}}}+{{a}_{{2n}}}} \right)$, với mọi số nguyên không âm m, n và m ≥ n. Nếu $ \displaystyle {{a}_{1}}=1$, hãy xác định: $ \displaystyle {{a}_{2017}}$.
Bài 2. Tìm tất cả các hàm số $ \displaystyle f:\mathbb{R}\to \mathbb{R}$ thỏa mãn: $ \displaystyle f({{n}^{2}})=f(n+m).f(n-m)+{{m}^{2}},\forall m,n\in \mathbb{R}$.
Bài 3. Tam giác ABC nhọn có H là trực tâm và P là điểm di động bên trong tam giác sao cho $ \displaystyle \widehat{{BPC}}=\widehat{{BHC}}$. Đường thẳng qua B và vuông góc với AB cắt PC tại M, đường thẳng qua C và vuông góc với AC cắt PB tại N. Chứng minh rằng: trung điểm I của MN luôn thuộc một đường thẳng cố định.
Bài 4. Tìm tất cả các đa thức P(x) có các hệ số nguyên thỏa mãn $ \displaystyle P(2017)={{1,3}^{n}}-1$ chia hết cho P(n) với mọi số nguyên dương n.
Bài 5. Chứng minh rằng: $ \displaystyle \sum\limits_{{k=0}}^{n}{{{{2}^{k}}}}C_{n}^{k}C_{{n-k}}^{{\left[ {\frac{{n-k}}{2}} \right]}}=C_{{2n+1}}^{n}$.
Đề thi - Tags: đề thi hsg, tỉnh Thanh HóaĐề thi chọn đội tuyển HSG môn Toán tỉnh Ninh Bình 2018-2019
Đề thi chọn đội tuyển HSG quốc gia tỉnh Phú Thọ 2018-2019
Đề thi tuyển sinh môn Toán vào lớp 6 THCS Nguyễn Tất Thành 2018-2019
8 Đề thi tuyển sinh lớp 5 lên 6 môn Toán tham khảo
Đề kiểm tra năng lực Toán, tiếng Việt lớp 4 lên 5
Đề thi kiểm tra hè dành cho học sinh lớp 4 lên 5 Toán và tiếng Việt
Đề thi, đáp án môn thi Giáo dục công dân THPT quốc gia 2018 mã đề 307