40 đề thi Toán tuyển sinh vào lớp 10 THPT và THPT chuyên
ĐỀ SỐ 17
Câu 1: Cho x1 = $ \sqrt{3\text{ + }\sqrt{5}}$ và x2 = $ \sqrt{3\text{ – }\sqrt{5}}$
Hãy tính: A = x1 . x2; B = $ \text{x}_{1}^{2}\text{ + x}_{2}^{2}$
Câu 2: Cho phương trình ẩn x: x2 – (2m + 1) x + m2 + 5m = 0
a) Giải phương trình với m = -2.
b) Tìm m để phương trình có hai nghiệm sao cho tích các nghiệm bằng 6.
Câu 3: Cho hai đường thẳng (d): y = -x + m + 2 và (d’): y = (m2 – 2) x + 1
a) Khi m = -2, hãy tìm toạ độ giao điểm của chúng.
b) Tìm m để (d) song song với (d’)
Câu 4: Cho 3 điểm A, B, C thẳng hàng (B nằm giữa A và C). Vẽ đường tròn tâm O đường kính BC; AT là tiếp tuyến vẽ từ A. Từ tiếp điểm T vẽ đường thẳng vuông góc với BC, đường thẳng này cắt BC tại H và cắt đường tròn tại K (KT). Đặt OB = R.
a) Chứng minh OH.OA = R2.
b) Chứng minh TB là phân giác của góc ATH.
c) Từ B vẽ đường thẳng song song với TC. Gọi D, E lần lượt là giao điểm của đường thẳng vừa vẽ với TK và TA. Chứng minh rằng ∆TED cân.
d) Chứng minh: $ \displaystyle \frac{HB}{HC}=\frac{AB}{AC}$
Câu 5: Cho x, y là hai số thực thoả mãn: (x + y)2 + 7(x + y) + y2 + 10 = 0
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = x + y + 1
Đề thi vào 10 môn Toán THPT chuyên Lê Quý Đôn – Đà Nẵng 2018
Đề thi thử vào lớp 10 THPT môn thi Toán 2017-2018
Đề thi vào lớp 10 THPT tại Hà Nội năm học 2015-2016
Đề thi vào lớp 10 trường chuyên Thái Bình năm 2012
Đề thi vào lớp 10 trường chuyên Lê Quý Đôn – Đà Nẵng năm 2012
Đề thi vào lớp 10 trường chuyên Nguyễn Trãi – Hải Dương năm 2012
Đề thi vào lớp 10 khối THPT chuyên đại học Vinh năm học 2010 – 2011